
Vol.:(0123456789)1 3

Conservation Genetics Resources (2021) 13:435–445 
https://doi.org/10.1007/s12686-021-01216-5

METHODS AND RESOURCES ARTICLE

A genus‑wide analysis of genetic variation to guide population 
management, hybrid identification, and monitoring of invasions 
and illegal trade in Iguana (Reptilia: Iguanidae)

Matthijs P. van den Burg1,2  · Frédéric Grandjean3  · David Schikorski4 · Michel Breuil2,5  · Catherine L. Malone2

Received: 30 January 2021 / Accepted: 13 May 2021 / Published online: 22 May 2021 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Biodiversity and wild populations are globally threatened by a wide range of actors. The genus Iguana, widely distributed 
throughout the Americas, is under threat by invasive species, hybridization, the global pet trade, and habitat destruction. This 
holds especially true for the insular lineages, with the Critically Endangered I. delicatissima having experienced a > 75% 
range decrease, primarily through hybridization with non-native iguanas. We collated published microsatellite data and 
genotyped samples from new localities to construct a distribution-wide Iguana dataset built from 190 individuals for 17 
microsatellite loci. This enabled us to identify patterns of genetic differentiation within and among populations, and identify 
key loci and private alleles for use in conservation management. Our analyses reveal clear separation between I. delicatissima 
and the I. iguana complex, highlighting the power of eight key microsatellite loci for the study of hybridization dynamics. 
Genetic differentiation within I. delicatissima identifies four clusters that aid decision making for conservation management 
action. Within the I. iguana complex, we increase mainland localities by 11-fold and recover 3.5 × more alleles across all 
loci than previously known. Overall, we identify 112 (48% private) and 76 (25% private) alleles for mainland and island 
lineages, respectively. We highlight loci sets to identify (1) non-native or hybrid iguanas in insular populations and their 
genetic origin, and (2) genetic origin of insular iguanas in the global pet trade. Overall, we provide a reference for Iguana 
microsatellite loci in order to allow standardization and comparison among studies, aiding broader assessment of research 
and conservation hypotheses.

Keywords Conservation · Database · Endangered species · Genetic diversity · Hybridization · Iguana delicatissima · 
Microsatellite

Introduction

Genetic tools are broadly utilized to gain understanding of 
wild populations and their conservation needs; e.g., exam-
ining metapopulation dynamics (Rowe et al. 2003), track-
ing illegal collection and trade (Coetzer et al. 2017), and 
characterizing genetic variation and inbreeding (Luís et al. 
2007; Engelhardt et al. 2017). Although development of 
novel techniques continues, 2nd generation methodologies 
(microsatellites) are still broadly applied (Vashistha et al. 
2020) as these are overall cheap to obtain data from, are 
preferred for small sample sizes, and can be processed and 
analyzed rapidly. Especially within conservation science, 
where funding is limited and results tend to be time sensi-
tive, microsatellites are an important go-to genetic tool.

Among Iguaninae, Iguana is the widest ranging genus, 
with mainland populations occurring from central Mexico 
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through to central Brazil, and widespread presence on Car-
ibbean islands (Belezian, Colombian, Honduran, Mexican, 
Nicaraguan, and Tobago and Trinidad islands, as well as in 
the Southern and Lesser Antilles; Iguana Taxonomy Work-
ing Group 2016; Hedges et al. 2019). Taxonomically, this 
genus consists of two well defined lineages, I. delicatissima 
and the I. iguana complex. Within the latter, hypotheses 
of species boundaries are unresolved, though are currently 
under investigation, see Table 1 for nomenclature and geo-
graphic ranges (Stephen et al. 2013; Breuil et al. 2019, 2020, 
submitted, van den Burg et al. in prep.).

As is true for many Iguanids (IUCN 2020), insular 
lineages within Iguana are highly endangered. The main 
threat to these species is the continuous spread and recur-
rent incursion of non-native iguanas, both through natural 
events and, since at least the 19th Century (Breuil 2003, 
2013), anthropogenic assistance, which is expected to con-
tinue in the absence of stricter biosecurity measures (Falcón 
et al. 2012; Bock et al. 2018; van den Burg et al. 2018a, 
2020a, 2020b, 2021b; Breuil et al. 2019, 2020; Knapp et al. 
2020). These invasive, non-native iguanas have profoundly 
impacted native insular iguana populations throughout the 
Lesser Antilles, as the former have larger clutch and body 
sizes and show higher aggressiveness than native igua-
nas (van den Burg et al. 2018a; van Wagensveld and van 
den Burg 2018; Breuil et al. 2019). These incursions from 
different nonnative sources have resulted in region-wide 
hybridization, best documented for the Critically Endan-
gered I. delicatissima (Vuillaume et al. 2015; van den Burg 
et al. 2018a, 2018b; Pounder et al. 2020), and to a lesser 
extent for the distinct lineages within the I. iguana complex 
(Breuil et al. 2019). Given this lengthy, continuous period 
of hybridization and subsequent within-region movement of 
non-native iguanas (Censky et al. 1998), morphologically 
distinguishing between native and (hybridized) non-native 
iguanas is often not straightforward (Breuil 2013; Vuillaume 
et al. 2015). This status quo clearly demonstrates the urgent 
need for robust genetic tools to distinguish native from non-
native (or hybrid) animals. Additionally, the increased activ-
ity in illegal trade of iguanas from Lesser Antillean islands 

(Noseworthy 2017; van den Burg and Weissgold 2020) fur-
ther highlights the need for island-level identification.

Within Iguana, microsatellite research has focused on a 
wide range of topics; invasion biology, population dynamics, 
as well as conservation (Valette et al. 2013; Vuillaume et al. 
2015; Martin Judson et al. 2018; van den Burg et al. 2018b; 
De Jesús Villanueva et al. 2021). However, different genetic 
laboratories have not standardized their data sets and employ 
different loci sets (Table 2), limiting the vital ability to com-
pare results, efficiently build upon prior work, and improve 
our understanding of these vulnerable populations. This 
knowledge gap of variation from across the genus’ range 
limits our ability to meaningfully assess population structure 
within lineages, and hinders the essential identification of 
Iguana hybrids and conservation of endangered lineages. 
From the perspective of hybridization issues, the research 
community currently lacks an understanding of allelic vari-
ation among known Iguana species and clades because data 
from native samples are almost entirely limited to island 
populations. The one exception is a 2015 study by Vuil-
laume et al. that included a single sample from each of two 
mainland localities with known origin. Hence, a genus-wide 
dataset is urgently needed in order to provide a foundation 
upon which all stakeholders can build, and use to guide con-
servation management decisions.

Materials and methods

The microsatellite loci set that has been most implemented 
among Iguana studies is that of Valette et al. (2013). We 
compiled data generated from all or a subset of these 25 
loci (Valette et al. 2013; Vuillaume et al. 2015; Breuil et al. 
2019, 2020, submitted). Furthermore, we collected data 
from new mainland (23) and insular (5) localities for a total 
of 53 native iguanas, to represent a wide-spread Iguana data-
set (Fig. 1, Table 1). We also included six morphologically 
identified hybrids between I. delicatissima and non-native 
iguanas; two samples from St. Barths, and Basse Terre and 
Grande Terre (Guadeloupe) (Vuillaume et al. 2015).

Table 1  Range of extent for currently named Iguana species and lineages, including sample sizes as in IguanaBase v1 (van den Burg et  al. 
2021a)

Species/lineage Range Sample size

Iguana delicatissima Lesser Antilles (Anguilla – Martinique) 67
I. rhinolopha (Clade III sensu Stephen et al. 2013) Central America, N of Costa Rican calderas (van den Burg et al. in prep) 16
I. aff. iguana Clade IIA (sensu Stephen et al. 2013) mainland South America, between Costa Rican calderas and Andes (van 

den Burg et al. in prep)
12

I. aff. iguana Clade I (sensu Stephen et al. 2013) ABC islands and Maracaibo delta (van den Burg et al. in prep) 9
I. iguana (Clade IIB sensu Stephen et al. 2013) mainland South America, E of Andes 14
I. insularis Saint Lucia, Saint Vincent and Grenadines 52
I. melanoderma Saba, Montserrat, and northern Venezuela 20
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Laboratory procedures were performed at Labofarm-
GenIndexe (France) where PCR settings and primers out-
lined by Valette et al. (2013) were used to amplify 17 loci 
(named as IgdL1-25 or L1-25 in previous studies; Valette 
et al. 2013; Vuillaume et al. 2015). Subsequently, PCR prod-
ucts were ran with Thermo ROX500 and analyzed using an 
ABI 3130 XL; alleles were next scored using Genemapper, 
while samples IGU039–43 were used to standardize allele 
sizes with aforementioned studies (see van den Burg et al. 
2021a).

Data analyses

After sample processing, we retained specimens with ≥ 80% 
scored loci for data analyses (for sample sizes used in 
analyses see Table 3 and figure captions). Considering our 
sample-set characteristics, only one population, from Ilet 
Chancel (29 samples), was suitable to test the presence of 
null alleles. Following Dabrowski et al (2014), we imple-
mented both Genepop and micro-checker software to assess 
the presence of null alleles (Raymond and Rousset 1995; van 
Oosterhout et al. 2004). The remaining sample-set included 
groups not amenable to this question as they were comprised 
of; (1) wide geographic sampling within lineages (produc-
ing a Wahlund Effect), or (2) low sample size of breeding 
populations (non-representative of existing variation), or 
(3) impacted by recent bottlenecks (strong effects of genetic 
drift).

Data were split into two sets, as previous studies have 
used different loci (Table 2). Our 12-loci dataset includes 
all native Iguana locations and the six Iguana-delicatissima 
hybrids, and our 17-loci dataset includes all native locations 
from the I. iguana complex. For these datasets we then cal-
culated relative allelic richness using the GenPopReport 
package within the R environment (R Core Team 2019).

Allele variation across all samples was assessed and vis-
ualized in color-coded tables to identify genetic variation 
within and between Iguana lineages (see Results). Within 
these tables we also include allelic data from the non-native 
and hybrid iguanas from Vuillaume et al. (2015) and Breuil 
et al. (2019).

Genetic differentiation and clustering were assessed 
using STRU CTU RE as implemented within GenoDive 3 
(Pritchard et al. 2000; Meirmans 2020). For the 12-loci data-
set, we applied this methodology to assess its utility to suc-
cessfully assign native pure and hybrid specimens, as well as 
to assess the genetic structure among I. delicatissima popu-
lations. For the 17-loci dataset, we assessed genetic structur-
ing within the I. iguana complex, for which we standardized 
sample sizes among lineages by reducing the sample size of 
I. melanoderma and I. insularis to those of the other lineages 
by randomly sampling while maintaining sample size-island 
proportions. STRU CTU RE runs used identical parameters Ta
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including an admixture model, correlated allele frequencies, 
and without linkage. Runs composed of 10 repeats for K 
ranges 1–10 using 100 K burnin and 500 K MCMC repeats. 

Subsequently, we assessed and visualized delta-K estimates 
for different K values using Structure Harvester (Evanno 
et al. 2005; Earl and vonHoldt 2012), and employed distruct 
to create final structure barplots (Rosenberg 2004). Lastly, 
within R through the loadingplot() command in the adegenet 
package, we assessed which loci and alleles most contribute 
to differentiation of I. delicatissima and non-delicatissima 
iguanas through a discriminant principal component analysis 
(DAPC; Jombart 2008).

Results

For the 12-loci dataset, mean allelic richness among I. 
delicatissima populations ranges between 1.03–1.16, and 
between 1.05–1.43 within the I. iguana complex. For the 
17-loci dataset, mean allelic richness shows higher val-
ues with a similar pattern among the I. iguana lineages, 
1.06–1.98 (Table 3). Within the complex, I. melanoderma 
and I. insularis show lower mean allelic richness compared 
to taxonomic units that mostly have a mainland range, 
though Iguana aff. iguana Clade I is here represented only 
by island populations.

Null-allele detection tests show inconsistent results 
with micro-checker suggesting presence for five loci (L3, 
L5, L12, L18, L24), whereas Genepop only for L20. We 
retain all loci in further discussion given that no single 
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Fig. 1  Map showing sample localities and current taxonomic status 
with Iguana: Inset shows the Lesser Antilles. Further geographic 
details for each lineage can be found in Table 1. ‘aff.’ indicates the 

uncertain taxonomic status, which is undergoing assessment (van den 
Burg et al. in prep)

Table 3  Mean allelic richness from two microsatellite loci sets for 
each taxonomic unit or population, including number of samples 
sequenced for > 80% of loci

*Data for I. iguana represents 14 and 12 samples for the 12- and 
17-loci datasets, respectively

12 loci 17 loci

Iguana delicatissima
St. Barths (3) 1.03 –
St. Eustatius (3) 1.07 1.12
Dominica (3) 1.14 1.27
Guadeloupe (12) 1.13 –
La Désirade (2) 1.05 –
Petite Terre (15) 1.13 –
Ilet Chancel (29) 1.16 –
Iguana rhinolopha (15) 1.22 1.61
Iguana aff. iguana Clade IIA (11) 1.43 1.98
Iguana aff. iguana Clade I (9) 1.40 1.85
Iguana iguana (14,12*) 1.40 1.85
Iguana insularis
 I. i. insularis (38) 1.11 1.30
 I. i. sanctaluciae (14) 1.05 1.06
Iguana melanoderma (18) 1.24 1.50
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see Table  3; for K = 2. Asterisks indicate individuals from St. Eus-

tatius and Dominica. b Overview of allele variation between I. deli-
catissima and non-delicatissima individuals, excluding hybrids. C 
DAPC loading contribution of loci and alleles for clustering between 
I. delicatissima – non-delicatissima, excluding hybrids



440 Conservation Genetics Resources (2021) 13:435–445

1 3

locus was flagged by both methods. We recommend these 
analyses be performed on definable populations that have 
been adequately sampled and meet the a priori assump-
tion of Hardy–Weinberg equilibrium.

Hybridization

Figure 2 provides an overview of results for hybridization 
purposes between native I. delicatissima and native non-
delicatissima, as well as six hybrids. Structure results are 

Fig. 3  Genetic variation among Iguana delicatissima island popu-
lations. a Structure and b delta K plot for population differentiation 
among pure I. delicatissima individuals (67; Table 3), using 12 loci 

dataset; K = 4. c Allele variation among seven island populations for 
20 loci; islands assigned to identical Structure cluster (a) have equal-
tone colors
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visualized for K = 2, which clusters I. delicatissima and non-
delicatissima separately, except for the six known hybrids 

(Fig. 2a). Surprisingly, assignment of Dominica and St. 
Eustatius samples to I. delicatissima was < 75% (Fig. 2a), 
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likely due to their low sample sizes and alleles with propor-
tionally higher representation in non-delicatissima samples; 
all samples in these two populations were fixed for unique I. 
delicatissima alleles. Visual inspection of patterns of allele 
variation and size range overlap between I. delicatissima and 
non-delicatissima reveals four loci with a complete lack of 
allele variation overlap, three of which include data from 
all I. delicatissima locations: L8, L18, and L25 (Fig. 2b). 
An additional two loci (L5 and L24) also indicate a high 
degree of usefulness for hybridization studies, but show a 
single allele overlap. Lastly, DAPC analysis identified a set 
of six loci with the highest contribution to differentiating I. 
delicatissima and non-delicatissima: L5, L8, L14, L18, L20 
and L25 (Fig. 2c).

Iguana delicatissima

Within I. delicatissima, delta-K identified four clusters with 
highest support (Fig. 3b): (1) Ilet Chancel and St. Barths, (2) 
Dominica and St. Eustatius, (3) Petite Terre and La Désir-
ade, and, (4) Guadeloupe. The first two groups contain 
islands not in close geographic proximity. For delta-K of 2 
(but see Janes et al. 2017), assignment followed that of Ilet 
Chancel and St. Barths vs. all other islands. Allelic variation 
is highest for larger islands or those with high population 
sizes; Dominica, Guadeloupe, Petite Terre and Ilet Chancel 
(Table 3, Fig. 3c).

Iguana iguana complex

Genetic differentiation and allele variation within the I. 
iguana complex are presented in Fig. 4. Optimal delta-K 
support indicated four clusters, with sub-structural sup-
port for seven clusters (Fig. 4a-c). Allele variation patterns 
between mainland (generally non-native) and insular line-
ages highlight loci of interest for identifying the genetic ori-
gin of non-native iguanas within those insular lineages; L3, 
L5, L6, L8, L9, L14 L16, L17, L19, L20, L23–25 (Fig. 4d). 
Loci that appear to be useful for characterizing insular 
groups, differs per lineage; I. melanoderma, L6, L14, L20, 
L25; I. insularis, L6, L13, L14, L17, L20; I. aff. iguana 
Clade I, L2, L5, L16, L17, L20, L23–25.

Discussion

Here we present a nuclear microsatellite database for Iguana 
that includes all current taxonomic groups with broad geo-
graphic representation across its range, demonstrating clear 
population genetic structure within I. delicatissima and 
the I. iguana complex. Furthermore, our results identify 
key sets of loci and private alleles useful in the study of 
conservation-hybridization issues and for narrowing down 

the geographic origin of commercially available pet iguanas 
and illegally transported individuals. This database fills an 
important gap given that nuclear loci sequence in prior work 
show low variability within the I. iguana complex (Stephen 
et al. 2013), prohibiting the fine scale variation at biparen-
tally inherited loci required to address such issues. Overall, 
our work demonstrates the successful amplification of these 
markers and their utility within the Iguana genus. Impor-
tantly, the benefits of this database will increase dramati-
cally with further input from the Iguana research commu-
nity, which we promote through free availability on figshare 
(van den Burg et al. 2021a).

Assignment of loci and private alleles to address research 
questions is dependent on sampling scheme, both its geo-
graphical width and density, as well as sample size per popu-
lation. Given the geographic range of Iguana, the coverage 
of the presented database is wide, though mainland sampling 
density is still low, with few samples per location. Notably, 
the database greatly increases coverage and lineage inclusion 
compared to Valette et al. (2013), which assigned 19 loci as 
useful for I. delicatissima hybridization studies based on one 
I. delicatissima (Ilet Chancel, Martinique), and one intro-
gressed (I. delicatissima – I. iguana) population (Grande-
Terre, Guadeloupe). Here, including data from almost all 
I. delicatissima populations (only lacking Anguilla), we 
identify 5–8 loci of specific use for identification of hybrids 
between I. delicatissima and the I. iguana complex (Fig. 2b, 
c). Although these loci are fewer in number, their identifica-
tion is based on a significant data increase from throughout 
the genus’ range; allowing conservationists to target fewer, 
highly informative loci and lower research costs. Further-
more, the need to standardize allele sizes across different 
studies and laboratories is exemplified in our finding that the 
three samples from St. Eustatius rescored in this study had 
different allele size for all five loci compared to results in 
van den Burg et al. (2018b), shifting higher or lower by 5–22 
bps, depending on the locus. Similarly, sample reanalyzes 
in the same laboratory can indicate allele size deviations, as 
data of several loci presented by Vuillaume et al. (2015) have 
since been updated (2–16 bps; Breuil et al. 2019). Lastly, 
with ongoing conservation priorities aimed at insular line-
ages, the characterization of their allele diversity will carry 
on, though we address the importance of characterizing new 
mainland localities. This continuous data collection high-
lights the need for a “live” dynamic database that provides 
a crucial, up-to-date, Iguana conservation tool.

The identification and continued usefulness of micros-
atellites in research on wild populations lies in their rapid 
mutation rate (Schlötterer 2000), demonstrating their use 
in studies of recently separated populations (Kuehn et al. 
2007), but highlighting their poor informative value for 
long evolutionary timelines (Carsten et al. 2013). Indeed, 
this high mutation rate prevents the determination of shared 
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alleles as synapomorphic or homoplasious, when comparing 
highly divergent lineages. This is evident in our database for 
shared alleles (e.g., L2) between I. iguana lineages and two 
I. delicatissima populations (St. Eustatius and Dominica) 
(Fig. 2a). Genetic samples from these I. delicatissima popu-
lations were obtained prior to first documented hybridization 
on both islands (van den Burg et al. 2018b, 2020a), though 
historic hybridization might have occurred. Another expla-
nation for shared L2 alleles is independent mutation as might 
be expected after a long period of evolutionary divergence.

The Critically Endangered, Lesser Antillean iguana has 
seen a > 75% decline from its pre-Colombian range due 
to extirpations subsequent to human settlement, and more 
recently, hybridization with non-native iguanas of the I. 
iguana complex (van den Burg et al. 2018a). Given the 
extremely low mtDNA variation throughout the range of I. 
delicatissima (Martin et al. 2015), microsatellites are bet-
ter suited to guide research and conservation (Vuillaume 
et al. 2015; Martin Judson et al. 2018; van den Burg et al. 
2018b). Small populations will lose diversity quickly and 
randomly diverge due to founder effects and/or drift over 
short time periods (Wright 1931), which has been demon-
strated in Iguanids as well (Colosimo et al. 2014; Welch 
et al. 2017). Thus, to maintain long term genetic variation 
within I. delicatissima it is essential that all island popula-
tions are genotyped. Our database builds on Vuillaume et al. 
(2015) by inclusion of two additional island populations, St. 
Eustatius and Dominica. Genetic clustering among currently 
sampled populations is not correlated with geographic prox-
imity, given two identified clusters: St. Eustatius–Dominica, 
and St. Barths–Ilet Chancel (Fig. 3a). Their genetic similar-
ity could originate from within-region dispersal facilitated 
by hurricanes, Amerindians or post-Colombian coloniz-
ers (Censky et al. 1998; Bryan et al. 2007; Bochaton et al. 
2016). Although this database represents the most inclusive 
to date, we call for sampling and genotyping of the Anguilla 
population and those on isolated islets around St. Barths, as 
well as additional genotyping of samples from Dominica and 
La Désirade. These genetic data can furthermore help iden-
tify the remaining pure animals on Guadeloupe and Marti-
nique, which are in need of urgent translocation to secure 
their genetic diversity. Lastly, these data and identified key 
loci will aid other conservation management decisions as 
identified by conservation action plans (e.g., translocations 
(Scott et al. 2020), captive breeding, and reintroductions 
(Knapp et  al. 2014; Angin 2017; ANT/ATE/STENAPA 
2018; Breuil 2021)).

We provide an initial assessment of allele variation 
among recently described lineages within the I. iguana 
complex. Optimal support was found for four genetic 
clusters, which grouped currently known lineages as (1) 
I. rhinolopha, (2) I. aff. iguana Clade IIA, (3) I. insularis, 
(4) I. iguana and I. melanoderma, and with an admixed 

assignment for I. aff. iguana Clade I (Fig. 4a, c). A sub-
optimal 7-cluster division distinguished I. iguana and I. 
melanoderma, as well as uniquely assigned I. aff. iguana 
Clade I (Fig. 4b, c). Allelic diversity indicated higher 
variation in mainland lineages and I. aff. iguana Clade I 
compared to solely insular lineages, with especially low 
diversity in I. i. sanctaluciae (Table 3). For vulnerable 
island populations (I. melanoderma, I. insularis, I. aff. 
iguana Clade I), we find three loci sets (4–8 loci) for ori-
gin assessment (see Results text for specifics). For the cur-
rent dataset, we note the skewed sampling effort towards 
recently described insular lineages (Breuil et  al. 2019 
2020, submitted), and highlight the need for improved 
sampling of the mainland lineages. Although threats 
within the I. iguana complex are less studied compared to 
those in I. delicatissima, it is well-known that mainland 
populations can be locally threatened due to overharvest-
ing, either for food or to supplement the pet trade (Ste-
phen et al. 2011). More recently, hybridization between 
non-native iguanas and native island populations has been 
described, as well as illegal trade of I. insularis and I. mel-
anoderma (Noseworthy 2017; Breuil et al. 2019; van den 
Burg and Weissgold 2020). Overall, the identified allelic 
variation (Fig. 4D) will aid in the discovery of non-native 
and hybrid iguanas and the geographic origin of these as 
well as of iguanas in the global commercial hobbyist trade.

In conclusion, this manuscript provides a reference for 
Iguana microsatellite loci in order to allow standardization 
and comparison among studies, aiding broader assessment 
of research and conservation hypotheses. Importantly, this 
work provides an essential tool for conservation of the 
Critically Endangered I. delicatissima, and taxa within 
the I. iguana complex. To ensure future comparability, 
we strongly urge that future studies utilize: (1) the same 
allele size ladder, (2) positive controls from localities with 
fixed alleles, and/or (3) samples scored in prior studies.
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