Record Details

Angeli, Nicole F;Lundgren, Ian F;Pollock, Clayton G;Hillis-Starr, Zandy M;Fitzgerald, Lee A
Dispersal and population state of an endangered island lizard following a conservation translocation
Ecological Applications
Journal Article
Population size is widely used as a unit of ecological analysis, yet to estimate population size requires accounting for observed and latent heterogeneity influencing dispersion of individuals across landscapes. In newly established populations, such as when animals are translocated for conservation, dispersal and availability of resources influence patterns of abundance. We developed a process to estimate population size using N-mixture models and spatial models for newly established and dispersing populations. We used our approach to estimate the population size of critically endangered St. Croix ground lizards (Ameiva polops) five years after translocation of 57 individuals to Buck Island, an offshore island of St. Croix, United States Virgin Islands. Estimates of population size incorporated abiotic variables, dispersal limits, and operative environmental temperature available to the lizards to account for low species detection. Operative environmental temperature and distance from the translocation site were always important in fitting the N-mixture model indicating effects of dispersal and species biology on estimates of population size. We found that the population is increasing its range across the island by 5–10% every six months. We spatially interpolated site-specific abundance from the N-mixture model to the entire island, and we estimated 1,473 (95% CI, 940–1,802) St. Croix ground lizards on Buck Island in 2013 corresponding to survey results. This represents a 26-fold increase since the translocation. We predicted the future dispersal of the lizards to all habitats on Buck Island, with the potential for the population to increase by another five times in the future. Incorporating biologically relevant covariates as explicit parameters in population models can improve predictions of population size and the future spread of species introduced to new localities.